C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Fluid Mechanics

	Subject Code: 4TE04FME1			Branch: B.Tech (Mechan	Branch: B.Tech (Mechanical, Automobile)		
	Semeste	r:4	Date : 05/05/2017	Time : 02:00 To 05:00	Marks : 70		
	(2) (3)	Use of Pro Instructior Draw neat	-	ny other electronic instrument is pr book are strictly to be obeyed. ecessary) at right places.	rohibited.		
Q-1	 a) b) c) d) e) f) g) h) i) 	Define f Define a Define c State the Which t different State nan Define s Define M The volu (a) volun (b) volun	dhesion. entre of pressure. e continuity equation for in ype of notch has reasona c operating conditions? me of any 1 efflux viscome onic flow. Mach Number umetric change of the fluid metric strain metric index	compressible flow. bly stable value of discharge co-		 (14) 01 	
	j)	(d) adheWhich of(a) species(b) species	pressibility sion If the following is dimension fic weight fic volume fic speed	onless		01	
	k)	A balloc (a) law c (b) Arch (c) princ	fic gravity on lifting in air follows the of gravitation imedes principle iple of buoyancy f the above	following principle		01	
	l)	Choose (a) speci	the correct relationship fic gravity = gravity x den mic viscosity = kinematic	•		01	

Page 1 || 3

m)	 (c) gravity = specific gravity x density (d) kinematic viscosity = dynamic viscosity x density For manometer, a better liquid combination is one having (a) higher surface tension (b) lower surface tension 	01
n)	 (c) surface tension is no criterion (d) high density and viscosity The property of fluid by virtue of which it offers resistance to shear is called (a) surface tension (b) adhesion 	01

(d) viscosity Attempt any four questions from Q-2 to Q-8

(c) cohesion

Q-2		Attempt all questions	(14)		
-	a)	State, explain and prove Pascal's law for fluid.	07		
	b)	Derive formula to determine Metacentric height using analytical method.	07		
Q-3		Attempt all questions	(14)		
	a)	What is Venturimeter? Derive an expression for the discharge through a Venturimeter.	07		
	b)	Describe journal, foot step and collar bearing.	03		
	c)				
Q-4		Attempt all questions			
	a)	A plate 0.03 mm distant from fixed plate moves at 70 cm/s and requires force per unit area equal to 3 N/m^2 to maintain this speed. Calculate fluid viscosity between the plates.			
	b)	State and explain various types of pressure with neat sketch.	04		
	c)	Derive the expression for velocity distribution and ratio of maximum velocity to average velocity for viscous flow through circular pipes.	07		
Q-5		Attempt all questions	(14)		
-	a)	State and explain various model or similarity laws	04		
	b)	State and explain various similarities between model and prototype.	03		
	c)	Water flows over a rectangular weir of width 1.5 m at a depth of 10 cm and then passes through a triangular right angled weir. Determine the depth of water through triangular weir. Take discharge co-efficient for the rectangular and triangular weir as 0.63 and 0.58 respectively.	07		
Q-6		Attempt all questions	(14)		
~ •	a)	The lift force F_L on the air foil depends upon the mass density of medium ρ , velocity of flow V, characteristic length l, viscosity μ , and angle of incidence α . Obtain an expression for the lift force using Buckingham's π -theorem.	07		
	b)	The head of water over an orifice of diameter 30 mm is 9 m. Find the actual discharge and actual velocity of the jet at vena-contracta. Take $C_d = 0.62$ and $C_v = 0.98$. Also calculate co-efficient of contraction.	07		
Q-7		Attempt all questions	(14)		
-	a)	Derive Euler's equation of motion along a stream line and hence generate Bernoulli's equation.	07		

Page 2 || 3

	b) Derive Continuity equation for 3D.		07
Q-8		Attempt all questions	(14)
	a)	Discuss various cases for propagation of pressure waves in a compressible fluid.	07
	b)	Derive Darchy- Weisbach equation for the head loss due to friction in pipes.	07

